DGTD methods using modal basis functions and symplectic local time-stepping: application to wave propagation problems

نویسنده

  • Serge Piperno
چکیده

The Discontinuous Galerkin Time Domain (DGTD) methods are now widely used for the solution of wave propagation problems. Able to deal with unstructured meshes past complex geometries, they remain fully explicit with easy parallelization and extension to high orders of accuracy. Still, modal or nodal local basis functions have to be chosen carefully to obtain actual numerical accuracy. Concerning time discretization, explicit nondissipative energy-preserving time-schemes exist, but their stability limit remains linked to the smallest element size in the mesh. Symplectic algorithms, based on local-time stepping or local implicit scheme formulations, can lead to dramatic reductions of computational time, which is shown here on two-dimensional acoustics problems. Key-words: waves, acoustics, Maxwell’s system, Discontinuous Galerkin methods, mass matrix condition number, symplectic schemes, energy conservation, local time-stepping. Méthodes DGTD avec fonctions de base modales et schémas en temps symplectiques : applications en propagation d’ondes. Résumé : Les méthodes de Galerkine discontinu sont maintenant largement utilisées pour la résolution numérique de problèmes de propagation d’ondes. S’appuyant sur des maillages non-structurés autour des géométries les plus générales, elles restent quasiment complètement explicites, facilement parallélisables et d’ordre élevé. Il convient néanmoins d’optimiser le choix des fonctions de base discontinues (modales ou nodales). Pour ce qui est de la discrétisation en temps, des schémas explicites non-dissipatifs existent, mais leur limite de stabilité reste liée aux plus petits éléments du maillage. Des algorithmes symplectiques, avec pas de temps local ou schéma localement implicite, conduisent à des diminutions considérables du temps de calcul. Mots-clés : ondes, acoustique, système de Maxwell, Galerkine discontinu, conditionnement, schémas symplectiques, conservation de l’énergie, pas de temps local. Symplectic modal DGTD methods for waves 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems

The Discontinuous Galerkin Time Domain (DGTD) methods are now popular for the solution of wave propagation problems. Able to deal with unstructured, possibly locally-refined meshes, they handle easily complex geometries and remain fully explicit with easy parallelization and extension to high orders of accuracy. Non-dissipative versions exist, where some discrete electromagnetic energy is exact...

متن کامل

Seismic Wave-Field Propagation Modelling using the Euler Method

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...

متن کامل

Development of DGTD solver for nanophotonics applications

During the last ten years, the discontinuous Galerkin timedomain (DGTD) method has progressively emerged as a viable alternative to well established finite-difference timedomain (FDTD) and finite-element time-domain (FETD) methods for the numerical simulation of electromagnetic wave propagation problems in the time-domain. We discuss here about the development and application of such a DTGD met...

متن کامل

Locally implicit discontinuous Galerkin method for time domain electromagnetics

In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...

متن کامل

Analytical D’Alembert Series Solution for Multi-Layered One-Dimensional Elastic Wave Propagation with the Use of General Dirichlet Series

A general initial-boundary value problem of one-dimensional transient wave propagation in a multi-layered elastic medium due to arbitrary boundary or interface excitations (either prescribed tractions or displacements) is considered. Laplace transformation technique is utilised and the Laplace transform inversion is facilitated via an unconventional method, where the expansion of complex-valued...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005